What Is Aging?
There are actually many factors that contribute to old age (free radical damage, hormonal changes, etc.), but of all of the things that make us “old,” two things stand out because until now, they have been so untouchable:
* The Hayflick Limit
* The glycation of proteins
The Hayflick Limit: Cell Life Span
The Hayflick Limit is named after the person who discovered it almost 40 years ago. A quick description is that all cells have only a limited capacity to continue to divide through the course of our lives.
Those numbers are different for each type of cell in our body, and by early adulthood, half of those divisions have been used up. By mid-life, maybe only 20-39% of those divisions are left. At that point, old age starts taking over – then death.
This limited capacity of a cell to perpetuate itself is called the Hayflick Limit. In effect, the Hayflick Limit determines life span at the cellular level. With each division, a cell becomes less likely to divide again, until finally it stops dividing altogether and becomes what we call senescent.
Cell senescence is the final step before cell death. Senescent cells are still alive and metabolically active, but they’re no longer capable of dividing. More importantly, though, senescent cells exhibit all of the characteristics that so bother us about old age, such as the difference between the supple skin of a child and the wrinkled skin of the elderly.
How do cells age?
As cells approach the Hayflick Limit, they divide less frequently and become aberrant. They take on wildly irregular forms. They no longer line up in parallel arrays; they assume a granular appearance, and deviate from their normal size and shape. This distorted appearance, called the senescent phenotype, is accompanied by a state of declining functionality that, UNTIL RECENTLY, was thought to be irreversible.
Astounding News: Reverse Aging
As it turns out, not only can we reverse the aging process at the cellular level now, and actually do it quite simply AND QUICKLY – but we can also reverse aging at the system level and the organ level. And for that matter, we can reverse it in terms of how we look and feel – and by that I mean our skin and hair and energy levels. And then, of course, we can even reverse it in terms of lifespan.
What’s the Secret?
The substance I’m talking about is L-carnosine. It’s a naturally occurring combination of two amino acids, alanine and histadine, that was discovered in Russia in the early 1900s.
Most notably, there were a series of astonishing experiments done in Australia that proved that carnosine rejuvenates cells as they approach senescence. Cells cultured with carnosine lived longer and retained their youthful appearance and growth patterns.
What’s probably the most exciting result of the studies is that it was discovered that carnosine can actually REVERSE the signs of aging in senescent cells.
The Reversal of Aging
When the scientists transferred senescent cells to a culture medium containing carnosine, those cells exhibited a rejuvenated appearance and often an enhanced capacity to divide. When they transferred the cells back to a medium lacking carnosine, the signs of senescence quickly reappeared.
As they switched the cells back and forth several times between the culture media, they consistently observed that the carnosine medium restored the juvenile cell phenotype WITHIN DAYS, whereas the standard culture medium brought back the senescent cell phenotype.
Increase Cell Life
In addition, the carnosine medium increased cell life span -- even for old cells. When the researchers took old cells that had already gone through 55 divisions and transferred them to the carnosine medium, they survived up to 70 divisions, compared to only 57 to 61 divisions for the cells that were not transferred.
This represents an increase in the number of cell divisions for each cell of almost 25%.