Spin memristive systems
by gowtham[ Edit ] 2010-02-15 16:05:37
A fundamentally different mechanism for memristive behavior has been proposed by Yuriy V. Pershin and Massimiliano Di Ventra in their paper "Spin memristive systems". The authors show that certain types of semiconductor spintronic structures belong to a broad class of memristive systems as defined by Chua and Kang. The mechanism of memristive behavior in such structures is based entirely on the electron spin degree of freedom which allows for a more convenient control than the ionic transport in nanostructures. When an external control parameter (such as voltage) is changed, the adjustment of electron spin polarization is delayed because of the diffusion and relaxation processes causing a hysteresis-type behavior. This result was anticipated in the study of spin extraction at semiconductor/ferromagnet interfaces, but was not described in terms of memristive behavior. On a short time scale, these structures behave almost as an ideal memristor.This result broadens the possible range of applications of semiconductor spintronics and makes a step forward in future practical applications of the concept of memristive systems.